
SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

Approximation Algorithms for Subclasses of the
Makespan Problem on Unrelated Parallel

Machines with Restricted Processing Times
Daniel R. Page

Department of Computer Science, University of Manitoba
Winnipeg, Manitoba, Canada
drpage@pagewizardgames.com

Abstract—Let there be m parallel machines and n jobs, where a job j can be scheduled
on machine i to take pi,j ∈ Z+ time units. The makespan Cmax is the completion time
of a machine that finishes last. The goal is to produce a schedule with all n jobs that
has minimum makespan. This is the makespan problem on unrelated parallel machines,
denoted as R||Cmax. Assume p, q ∈ Z+ are constants, let A(p, q) = {a ∈ Z+ | p ≤ a ≤ q}.
We explore a general NP-hard subclass of R||Cmax when processing times are between p
and q inclusive or pi,j =∞ abbreviated as R|pi,j ∈ A(p, q)∪ {∞}|Cmax, where pi,j =∞
means job j cannot be scheduled to machine i. We give a (q/p)-approximation algorithm
for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax. As a consequence, we obtain a 2-approximation
algorithm for the NP-hard subclass R||Cmax with job lengths 1, 2, or pi,j = ∞. In
addition, we prove R||Cmax with job lengths 1, 2, and 3 is NP-hard, and present a
3/2-approximation algorithm for this subclass of R||Cmax.

Keywords: approximation algorithms, combinatorial optimization, computational complexity,
scheduling, unrelated parallel machines.

I. Introduction

Suppose there are m parallel machines and n jobs to be scheduled non-preemptively. A job j
scheduled on machine i takes pi,j time units to complete, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. For a
given schedule, the makespan is the completion time of a machine that finishes last. The goal is to
produce a schedule of all n jobs with minimum makespan. This general scheduling problem is called
the makespan problem on unrelated parallel machines, which is represented by the Graham notation
(see Graham et al. [6]) as R||Cmax.

An instance of the makespan problem on UPMs is given by a m× n matrix P = (pi,j) called a
processing requirement matrix, the number of UPMs m, and the number of jobs n. For a processing
requirement matrix P , we denote the optimal makespan as OPT (P). As shorthand, we write
pi,j =∞ if job j takes too long to be processed by machine i—restricting jobs to be assigned only to
certain machines. Assume without loss of generality that for any processing requirement matrix P
that for every column j there exists a row i, such that pi,j 6= ∞. Any processing requirement
matrix P that does not satisfy this assumption contains jobs that cannot be scheduled on any
machine. Since the order jobs are assigned to machines does not matter under this model of
scheduling, a schedule can be represented as a 0-1 m×n matrix X = (xi,j) we will call an assignment
matrix. We say xi,j = 1 if job j is scheduled on machine i, and xi,j = 0 otherwise.

The scheduling problem R||Cmax is NP-hard, because a special case, the makespan problem
on identical parallel machines (i.e., P ||Cmax) when m = 2 is NP-hard [5]. Under the assumption
that P 6= NP, researchers seek polynomial-time algorithms that guarantee feasible solutions whose
objective value is always within a factor k of the optimal objective value. If a polynomial-time

COPYRIGHT©Scientific Online Publishing 1

http://www.scipublish.com/journals/AM/papers/1097
mailto:drpage@pagewizardgames.com

SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

algorithm has such a factor k often called its approximation factor, then we call it a k-approximation
algorithm. Note that an approximation factor is a relative performance guarantee. If a polynomial-
time algorithm has instead an absolute performance guarantee k with respect to the optimal objective
value, we call it a k-absolute approximation algorithm.

Approximation algorithms for R||Cmax have been presented over the years [8, 1], but in 1990,
Lenstra et al. [9] gave the first 2-approximation algorithm for R||Cmax. Their algorithm uses linear
programming to obtain a fractional feasible schedule, then rounds all remaining fractional jobs
by finding a matching. In addition, the authors showed a hardness of approximation result that
says there is no p-approximation algorithm for any p < 3/2, unless P = NP. Later Shchepin and
Vakhania [12] gave an approximation algorithm that also uses linear programming, but a more
refined rounding scheme to obtain an approximation factor of (2− 1/m). Most recently, Gairing et
al. [4] showed that finding a feasible fractional schedule with linear programming and performing
a rounding can instead be done with generalized network flows, and presented a more efficient
2-approximation algorithm for R||Cmax.

In response to the best known approximation factor of two for R||Cmax, some researchers consider
NP-hard subclasses or special cases of R||Cmax in order to devise a p-approximation algorithm with
p ≤ 2. Two examples are a polynomial-time algorithm that estimates the optimal makespan within a
factor 1.9412 for identical parallel machines with restricted assignments (i.e., R|pi,j ∈ {pj ,∞}|Cmax)
presented by Svensson [13], and the 1.75-approximation algorithm by Ebenlendr et al. [3, 2] for a
subclass of R||Cmax called graph balancing, which is R|pi,j ∈ {pj ,∞}|Cmax with the restriction that
at most two entries satisfy pi,j 6=∞ in each column of the processing requirement matrix. In 2014,
Vakhania et al. [14] developed a q-absolute approximation algorithm that uses linear programming
for R||Cmax with two distinct integral constants for processing times, which is abbreviated as
R|pi,j ∈ {p, q}|Cmax. To this date, for any k < 2, no k-approximation algorithm has been given for
R|pi,j ∈ {p, q,∞}|Cmax.

Given two fixed positive integers p and q, define A(p, q) = {a ∈ Z+ | p ≤ a ≤ q}, where p ≤ q.
Consider scheduling on UPMs when processing times are either from A(p, q) or pi,j =∞. Denote
this scheduling problem as R|pi,j ∈ A(p, q) ∪ {∞}|Cmax. This problem is NP-hard, because the
special case R|pi,j ∈ {p, q}|Cmax when q 6= 2p is NP-hard [9]. Note that this problem can also be
shown to be NP-hard due to R|pi,j ∈ {1, 2,∞}|Cmax being NP-hard [9]. This subclass encompasses
numerous scheduling problems of interest where either we are interested in restricted processing
times, or restricted assignment instances. In Section II, we give a (q/p)-approximation algorithm for
this subclass of R||Cmax.

II. (q/p)-approximation algorithm for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax

To begin, we present an algorithm that uses matching techniques. Our motivation is to exploit
known polynomial-time solvable subclasses in order to develop polynomial-time algorithms that need
not require linear programming. If we devise an algorithm for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax, then
we have developed an approximation algorithm for a large set of pragmatic scheduling problems
with restricted processing times, including R|pi,j ∈ {1, 2,∞}|Cmax and R|pi,j ∈ {p, q}|Cmax. The
approximation algorithm we present as Algorithm 2 utilizes the polynomial-time solvablility [9] of
subclass R|pi,j ∈ {1,∞}|Cmax. A subroutine of Algorithm 2 is to determine in polynomial time if
there is a schedule with makespan at most d ∈ Z+ for an instance of R|pi,j ∈ {1,∞}|Cmax, which
we provide as Algorithm 1 and is based on the remarks of Lenstra et al. [9]. If there is a schedule
with makespan at most d, we say the deadline is “met”, and “not met” otherwise. If the deadline is
met, Algorithm 1 also describes how to construct the schedule.

Algorithm 1. Assume we are given an arbitrary m× n processing requirement matrix Ψ = (ψi,j),
and let d ∈ Z+ be a proposed deadline for the makespan of a feasible schedule X. Create a bipartite
graph G = (M ∪J,E) that consists of “machine vertices” M and “job vertices” J . We say a machine

COPYRIGHT©Scientific Online Publishing 2

http://www.scipublish.com/journals/AM/papers/1097

SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

vertex k ∈M is of type i if it corresponds to machine i. Each job vertex corresponds to a job. For
each machine i, create d machine vertices of type i, and for each job j, create a job vertex that
corresponds to job j. If ψi,j = 1, for each machine vertex k of type i, create an edge {k, j}. Find a
maximum matching Mmax of G in polynomial time [7], and if |Mmax| = n, then there is a feasible
schedule X. To construct X, consider each edge {k, j} ∈ Mmax. For each edge {k, j} ∈ Mmax,
let xi,j = 1, where machine vertex k is of type i. Finally, if the makespan is at most d, then the
deadline is met. Otherwise, the deadline is not met.

It is straightforward to see that if all the job vertices are saturated in the maximum match-
ing Mmax for some d ∈ Z+ in Algorithm 1, the deadline is met. So to obtain an optimal schedule,
simply apply binary search to find the smallest d, such that the deadline is met. This yields our
approximation algorithm for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax, given as Algorithm 2.

Algorithm 2. Create another m×n processing requirement matrix Ψ = (ψi,j) as follows. For each
entry pi,j 6= ∞, let ψi,j = 1, and ψi,j = ∞ otherwise. Every entry of Ψ is either 1 or ∞. Apply
binary search over [bn/mc, n] using Algorithm 1 to find an optimal schedule for Ψ, then return the
best assignment matrix X of Ψ found, and terminate.

Let’s show that this simple algorithm is a (q/p)-approximation algorithm for R|pi,j ∈ A(p, q) ∪
{∞}|Cmax.

Theorem 1. Algorithm 2 is a (q/p)-approximation algorithm for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax.

Proof. Assume we are given an arbitrary instance of R|pi,j ∈ A(p, q) ∪ {∞}|Cmax. First, we
show Algorithm 2 terminates in polynomial time. Algorithm 2 begins by creating from P a
m × n processing requirement matrix Ψ in Θ(mn) steps. Then, Algorithm 2 finds an optimal
assignment matrix X for Ψ, which can be done in polynomial time [9]. An optimal schedule for Ψ
can be found in O(log2(n)(mn)5/2) steps. What remains to be shown is that the approximation
factor of Algorithm 2 is q/p.

Next, list the entries of A(p, q) as A(p, q) = {z1, . . . , z|A(p,q)|}. For b = 1, 2, . . . , |A(p, q)|,
p ≤ zb ≤ q. Introduce a processing requirement matrix P ′ = (p′i,j) that is P with rescaled job
lengths p′i,j ∈ {z1/p, z2/p, . . . , z|A(p,q)|/p,∞}. Denote an optimal schedule for P as S∗, where
x∗i,j = 1 if job j is scheduled on machine i. Let α be a machine that completes last when we apply
Algorithm 2. Call the schedule produced S, and denote its corresponding schedule with P ′ schedule
as S′. The makespan of schedule S′ is

n∑
i=1

p′α,jxα,j =
|A(p,q)|∑
b=1

n∑
j=1,

pα,j = zb

(
(zb/p)xα,j

)
.

Each zb ≤ q and q/p ≥ 1, so

|A(p,q)|∑
b=1

n∑
j=1,

pα,j = zb

(
(zb/p)xα,j

)
≤ (q/p) ·

n∑
j=1

xα,j . (1)

In an optimal schedule for P , let machine φ be a machine that is assigned the most jobs. Denote
machine β as a machine that completes last for schedule S∗. Observe

n∑
j=1

x∗φ,j ≤
n∑
j=1

p′β,jx
∗
β,j = OPT (P)/p. (2)

COPYRIGHT©Scientific Online Publishing 3

http://www.scipublish.com/journals/AM/papers/1097

SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

Algorithm 2 then finds an optimal schedule for Ψ. The assignment of jobs for schedules S and S′
are determined by the assignments made for Ψ. So, the algorithm produces a feasible schedule for
which the maximum number of jobs assigned on each machine is minimized. Then it follows that

n∑
j=1

xα,j ≤
n∑
j=1

x∗φ,j , (3)

and by (1)–(3),

(q/p) ·
n∑
j=1

xα,j ≤ (q/p) ·
n∑
j=1

x∗φ,j ≤ (q/p) · (OPT (P)/p).

Thus, the makespan of schedule S is
n∑
i=1

pα,jxα,j ≤ (q/p) ·OPT (P).

Therefore, this is a (q/p)-approximation algorithm for R|pi,j ∈ A(p, q) ∪ {∞}|Cmax.

Though the approximation factor of q/p can be undesirable for any p and q, it is of curiosity when
q/p ≤ 2. Algorithm 2 can guarantee a schedule with makespan for certain values of p and q better
than twice the optimal makespan or even better than the hardness of approximation result of 3/2
for R||Cmax. For example if pi,j ∈ {4, 5}, then Algorithm 2 is a 5/4-approximation algorithm, and
5/4 < 3/2. If q/p > 2, then one could instead apply known 2-approximation algorithms [9, 12, 4].

Since R|pi,j ∈ {p, q,∞}|Cmax and R|pi,j ∈ {1, 2,∞}|Cmax are special cases of R|pi,j ∈ A(p, q) ∪
{∞}|Cmax we obtain the following corollaries.

Corollary 1. Algorithm 2 is a (q/p)-approximation algorithm for R|pi,j ∈ {p, q,∞}|Cmax.

Corollary 2. Algorithm 2 is a 2-approximation algorithm for R|pi,j ∈ {1, 2,∞}|Cmax.

III. Intractability results for subclasses of R|pi,j ∈ {p, q, r}|Cmax

The target of this section are scheduling problems on UPMs with three distinct processing times. This
scheduling problem is a natural representation for scheduling jobs on UPMs with short, medium, and
long types of processing times. One pragmatic special case of this subclass is R|pi,j ∈ {1, 2, 3}|Cmax,
which is one of the simplest UPM scheduling models with three processing times. We open this
section by giving a NP-complete problem [5] called the r-dimensional matching (rDM) problem.

Problem 1 (r-dimensional matching (rDM)). Let r > 2. Let there be r disjoint sets A1 =
{a1,1, . . . , a1,n′}, . . . , Ar = {ar,1, . . . , ar,n′}, and a family of r-sets F = {T1, . . . , Tm′}, where |Ti ∩
Aj | = 1 for i = 1, . . . ,m′, and for j = 1, . . . , r. Does F contain a subfamily F ′ ⊆ F called a
r-dimensional matching (rDM), where |F ′| = n′ and

⋃
Ti∈F ′ Ti =

⋃r
t=1 At?

An instance of the rDM problem is denoted as (A1, . . . , Ar, F,m
′, n′), where A1, . . . , Ar are the

disjoint n′-sets, F is the family of r-sets, m′ is the number of r-sets in F , and n′ is the number of
elements in each disjoint set.

In this section, we develop computational complexity results for subclasses of R||Cmax that have
three distinct processing times, R|pi,j ∈ {p, q, r}|Cmax. In order to do so, we define this problem as
a decision problem we call MAKESPANUPM-{p, q, r}.

Problem 2 (MAKESPANUPM-{p, q, r}). Let there be three fixed positive integers p, q, r, where
p < q < r. Given a m× n processing requirement matrix P with processing times pi,j ∈ {p, q, r}, is
there a schedule with makespan at most d?

COPYRIGHT©Scientific Online Publishing 4

http://www.scipublish.com/journals/AM/papers/1097

SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

An instance of MAKESPANUPM-{p, q, r} is a 4-tuple (P,m, n, d), where P is a m×n processing
requirement matrix, m is the number of machines, n is the number of jobs, and d ∈ Z+ is a
proposed makespan to be met with a “yes” or “no” answer. Next, we show how to construct a
MAKESPANUPM-{p, q, r} instance from an instance of the rDM problem in polynomial time.

Construction 1. Assume there are constants p, q, r ∈ Z+, where p < q < r. Given an instance I =
(A1, . . . , Ar, F, n

′,m′) of the rDM problem, where m′ ≥ n′, we construct from I an instance I ′ =
(P,m, n, d) of MAKESPANUPM-{p, q, r} in polynomial time. Create a m×n processing requirement
matrix P , where m = m′ and n = rn′ + p(m′ − n′). There are two types of jobs: dummy jobs, and
element jobs. A dummy job takes r time units on every machine. For each element in the disjoint
sets, there is an element job. For 1 ≤ i ≤ m′, an element job takes p time units on machine i if
element as,t ∈ Ti of F and q time units otherwise, where 1 ≤ s ≤ r and 1 ≤ t ≤ n′. Let rn′ of the
jobs be element jobs and p(m′ − n′) of the jobs be dummy jobs. Assign d = rp. Such a processing
requirement matrix P consists of elements pi,j ∈ {p, q, r}.

We now show a correspondence between the rDM problem and MAKESPANUPM-{p, q, r}. In
particular, we show there is a rDM F ′ if and only if there is a schedule with makespan at most
d = rp. Our proof extends the correspondence presented by Lenstra et al [9] for two-valued subclasses
R|pi,j ∈ {p, q}|Cmax when q 6= 2p to three-valued subclasses R|pi,j ∈ {p, q, r}|Cmax with p < q < r.

Lemma 1. Assume m′ ≥ n′. Given constants p, q, r ∈ Z+ where p < q < r, and rDM instance
I = (A1, . . . , Ar, F,m

′, n′), create MAKESPANUPM-{p, q, r} instance I ′ = (P,m, n, d) by applying
Construction 1. There is a rDM F for I if and only if there exists a schedule for I ′ with makespan
at most d = rp.

Proof. First, let us show if there is a rDM for I, then there is a schedule for I ′ with makespan
at most d = rp. In order to develop a feasible schedule for I ′, all the element jobs and dummy
jobs need to be scheduled. Since there is a rDM F ′, each element job corresponds to a distinct
element of A1 ∪ · · · ∪Ar. There are n′ r-sets in F ′, each with r distinct elements. Each r-set in F
corresponds to a machine. So for each r-set of rDM F ′, if an element appears in the r-set, schedule
its corresponding element job on the machine that corresponds to the r-set. Then n′ machines have
load rp, and all the element jobs are scheduled. Exactly (m′ − n′) remaining machines have load 0,
and p(m′ − n′) dummy jobs are left. Schedule on each remaining machine p dummy jobs, and each
machine will have load rp. Thus, if there is a rDM, then there is a schedule with makespan at most
rp.

Next, we show if there is a schedule for I ′ that has makespan at most d = rp, then there is a
rDM F ′ for I. Suppose there is a schedule for I ′ with makespan at most rp, but there does not
exist a rDM F ′ for I. In order to respect the makespan of rp, p(m′ − n′) dummy jobs must be
assigned to exactly (m′ − n′) machines to take r time units each. This leaves n′ machines and rn′
element jobs in the schedule. By our assumption, at least one of the element jobs is assigned to
the remaining n′ machines and takes q time units, where q > p. This implies either the schedule is
infeasible, or the makespan of the schedule is at least (r − 1)p+ q > rp, which is a contradiction.
Thus, if there exists a schedule for I ′ that has makespan at most rp, then there is rDM for I.

Therefore, there is a rDM F ′ for I if and only if there is a schedule with makespan at most rp
for I ′.

Theorem 2. R|pi,j ∈ {1, 2, 3}|Cmax is NP-hard.

Proof. Consider the decision variant of R|pi,j ∈ {1, 2, 3}|Cmax, MAKESPANUPM-{1, 2, 3} (i.e.
a special case of Problem 2). We show R|pi,j ∈ {1, 2, 3}|Cmax is NP-hard by proving that
MAKESPANUPM-{1, 2, 3} is NP-complete. To do this, we reduce from the 3DM problem (i.e., a
special case of Problem 1), which is NP-complete [5]. Observe that the makespan can be computed

COPYRIGHT©Scientific Online Publishing 5

http://www.scipublish.com/journals/AM/papers/1097

SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

in O(mn) steps, so MAKESPANUPM-{1, 2, 3} ∈ NP. What remains to be shown is that 3DM ≤P
MAKESPANUPM-{1, 2, 3}.

First, let’s describe how to construct the MAKESPANUPM-{1, 2, 3} instance I ′ = (P,m, n, d)
from any 3DM problem instance I = (A1, . . . , Ar, F,m

′, n′) in polynomial time. If m′ ≥ n′, apply
Construction 1 with p = 1, q = 2, and r = 3 to obtain I ′. By Lemma 1, if there is a feasible schedule
for I ′ with makespan at most d = 3, then there is a 3DM , and say “yes”. Otherwise if m′ < n′,
or there does not exist a schedule for I ′ with makespan at most d = 3, say “no”. Thus, 3DM ≤P
MAKESPANUPM-{1, 2, 3}, and MAKESPANUPM-{1, 2, 3} is NP-complete.

Therefore, R|pi,j ∈ {1, 2, 3}|Cmax is NP-hard.

Applying Lemma 1 for fixed values of p, q, r, we obtain the subsequent results from the argument
for Theorem 2.

Corollary 3. R|pi,j ∈ {1, 2, 4}|Cmax is NP-hard.

Corollary 4. Define constants p, q, r ∈ Z+, where p < q < r. The scheduling problem R|pi,j ∈
{p, q, r}|Cmax is NP-hard.

IV. 3/2-approximation algorithm for R|pi,j ∈ {1, 2, 3}|Cmax

In Section III, we showed R|pi,j ∈ {1, 2, 3}|Cmax is NP-hard. This gives us motivation to develop an
approximation algorithm for this scheduling problem. Our goal is to develop a simple to implement
algorithm that employs matching techniques as opposed to linear programming. We show that for
this subclass, there exists an approximation algorithm that has an approximation factor that matches
the hardness of approximation results of R||Cmax. This result is the first of its kind for a NP-hard
scheduling problem on UPMs with three different processing times. First, we present our algorithm
as Algorithm 3, which adapts a known polynomial-time solvable result by Lenstra et al. [9] for
R|pi,j ∈ {1, 2}|Cmax. Note that in 2014, Vakhania et al. [14] also gave a polynomial-time algorithm
that uses linear programming for R|pi,j ∈ {1, 2}|Cmax. Similar linear programming techniques have
also been applied in the study of geometric graphs (see [10, 11]).

Algorithm 3. Construct a new m× n processing requirement matrix P ′ that will be an instance
of R|pi,j ∈ {1, 2}|Cmax. For i = 1, . . . , n and j = 1, . . . ,m, if pi,j > 2, then p′i,j = 2. Otherwise,
let p′i,j = pi,j . The result is an instance of the makespan problem on UPMs with processing
times pi,j ∈ {1, 2}. Next, find an optimal schedule for P ′, which can be done in polynomial time [9],
and call its assignment matrix X. Return the assignment matrix X, then terminate.

Next, we show that Algorithm 3 is a 3/2-approximation algorithm for R|pi,j ∈ {1, 2, 3}|Cmax.

Theorem 3. Algorithm 3 is a 3/2-approximation algorithm for R|pi,j ∈ {1, 2, 3}|Cmax.

Proof. Suppose we are given an arbitrary m× n processing requirement matrix P with processing
times pi,j ∈ {1, 2, 3}. First we show that Algorithm 3 terminates in polynomial time. To begin,
Algorithm 3 constructs P ′ in at most Θ(mn) steps. Next, the algorithm finds an optimal schedule
for P ′ in polynomial time [9]. The algorithm terminates after returning the resulting assignment
matrix X, so Algorithm 3 terminates in polynomial time. Now we show that Algorithm 3 when
applied to any instance of R|pi,j ∈ {1, 2, 3}|Cmax always produces a feasible schedule, and has
approximation factor 3/2.

Consider the assignment matrix X returned as a result of Algorithm 3, call its corresponding
schedule S. Also, let S∗ be an optimal schedule for P , and its associated assignment matrix be X∗.
Since an optimal schedule for P ′ is found, the schedule S produced by Algorithm 3 is feasible. Let
α be a machine that finishes last in the schedule produced by Algorithm 3. Also, let β be a machine

COPYRIGHT©Scientific Online Publishing 6

http://www.scipublish.com/journals/AM/papers/1097

SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

that finishes last in schedule S∗. Since X consists of assignments that correspond to an optimal
schedule for P ′,

n∑
j=1

p′α,jxα,j ≤
n∑
j=1

pβ,jx
∗
β,j = OPT (P) (4)

Each entry in P that is 3 time units is replaced with 2 time units in P ′ by Algorithm 3. By (4), the
makespan of the schedule S is

n∑
j=1

pα,jxα,j ≤
n∑
j=1

((3/2)p′α,j)xα,j = (3/2)
n∑
j=1

p′α,jxα,j ≤ (3/2) ·OPT (P).

Therefore, Algorithm 3 is a 3/2-approximation algorithm.

Consider R|pi,j ∈ {1, 2, 4}|Cmax. It is straightforward to see that an argument similar to the
one given for Theorem 3 yields the following result for R|pi,j ∈ {1, 2, 4}|Cmax.

Corollary 5. Algorithm 3 is a 2-approximation algorithm for R|pi,j ∈ {1, 2, 4}|Cmax.

The approximation factor of Algorithm 3 for R|pi,j ∈ {1, 2, 4}|Cmax is on par with the best
known for R||Cmax.

V. Conclusion

As a consequence of this work, an open problem stands for the NP-hard subclass R|pi,j ∈ A(p, q) ∪
{∞}|Cmax, and many of its NP-hard special cases, such as R|pi,j ∈ {p, q}|Cmax and R|p ≤ pi,j ≤
q|Cmax. Since there exists a (q/p)-approximation algorithm for the NP-hard subclass R|pi,j ∈
A(p, q)∪{∞}|Cmax, the hardness of approximation results for R||Cmax do not apply when q/p < 3/2.
The fact that R|pi,j ∈ A(p, q) ∪ {∞}|Cmax does not apply to the general hardness of approximation
result for R||Cmax may indicate that a PTAS exists. Is there a PTAS for R|pi,j ∈ A(p, q)∪{∞}|Cmax?
If there is no PTAS for this subclass, are there any non-trivial hardness of approximation results for
R|pi,j ∈ A(p, q) ∪ {∞}|Cmax?

Another avenue of research that has not yet been investigated in the literature thoroughly is the
makespan problem on UPMs with three distinct processing times, denoted as R|pi,j ∈ {p, q, r}|Cmax.
Currently there is little in the literature on this subclass of R||Cmax Also, is there an approximation
algorithm with approximation factor better than 3/2 for R|pi,j ∈ {1, 2, 3}|Cmax that does not utilize
linear programming, but instead, matching techniques?

By considering the general NP-hard subclass R|pi,j ∈ A(p, q) ∪ {∞}|Cmax, we developed an
efficient (q/p)-approximation algorithm that can guarantee feasible schedules with makespan closer
to optimal using basic matching techniques than the best known results whenever q/p ≤ 2. We
also extended the known intractability results from two distinct processing times to three distinct
processing times. We hope our contributions will motivate researchers to pursue more NP-hard
subclasses and tractable subclasses of the makespan problem on UPMs with restricted processing
times.

VI. Acknowledgments

Thank you Dr. (Ben) P.C. Li for supervising and providing feedback during the development of this
research at the University of Manitoba.

COPYRIGHT©Scientific Online Publishing 7

http://www.scipublish.com/journals/AM/papers/1097

SOP TRANSACTIONS ON APPLIED MATHEMATICS
Accepted version, see http://www.scipublish.com/journals/AM/papers/1097 for published version.

Note there is a minor correction on page 2 of this version as of Aug. 23, 2016.

References

[1] E. Davis and J. Jaffe. Algorithms for scheduling tasks on unrelated processors. J. of the ACM
(JACM), 28(4):721–736, 1981.

[2] T. Ebenlendr, M. Krčál, and J. Sgall. Graph balancing: A special case of scheduling unrelated
parallel machines. Algorithmica, 68(1):62–80, 2014.

[3] T. Ebenlendr, M. Krčál, and J. Sgall. Graph balancing: A special case of scheduling unrelated
parallel machines. In Proc. of the 19th Annual ACM–SIAM Symposium on Discrete algorithms
(SODA), pages 483–490, 2008.

[4] M. Gairing, B. Monien, and A. Woclaw. A faster combinatorial approximation algorithm for
scheduling unrelated parallel machines. Theoretical Computer Science, 380(1):87–99, 2007.

[5] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman New York, 1979.

[6] R. Graham, E. Lawler, J. Lenstra, and K. Rinnooy. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326,
1979.

[7] J. Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. on Computing, 2(4):225–231, 1973.

[8] O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent tasks on nonidentical
processors. J. of the ACM (JACM), 24(2):280–289, 1977.

[9] J. Lenstra, D. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Program., 46(1–3):259–271, 1990.

[10] C. McDiarmid and T. Müller. On the chromatic number of random geometric graphs. Combi-
natorica, 31(4):423–488, 2011.

[11] Y. Shang. Improper coloring of random geometric graphs. Journal of Advanced Research in
Applied Mathematics, 4(1):1–9, 2012.

[12] E. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for scheduling
unrelated machines. Operations Res. Letters, 33:127–133, 2005.

[13] O. Svensson. Santa Claus schedules jobs on unrelated machines. In STOC’11 Proc. of the 43rd
ACM Symposium on Theory of Computing, pages 617–626, New York, 2011. ACM.

[14] N. Vakhania, J. Hernandez, and F. Werner. Scheduling unrelated machines with two types of
jobs. International J. of Production Res., 53(13):3793–3801, 2014.

COPYRIGHT©Scientific Online Publishing 8

http://www.scipublish.com/journals/AM/papers/1097

	Introduction
	(q/p)-approximation algorithm for R|pi,j A(p,q) {}|Cmax
	Intractability results for subclasses of R|pi,j {p,q,r}|Cmax
	3/2-approximation algorithm for R|pi,j {1,2,3}|Cmax
	Conclusion
	Acknowledgments

